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Abstract. We present experimental and theoretical results for the dispersion of the 0.5 eV
charge-carrier plasmon in A3C60 (A = K, Rb) compounds. The experimental dispersion
in K3C60 is zero within the experimental accuracy, and the theoretical dispersion is slightly
negative. We show that the small dispersion results from two large, opposing effects. Local-
field effects tend to lead to a large negative dispersion, while interband transitions largely cancel
this effect. The interband effects can be thought of in terms of the dielectric function due to
classical, polarizable spheres describing the C60 molecules. This dielectric function reduces the
plasmon energy, and the reduction of the dielectric function with increasingq tends to lead to
a large, positive dispersion.

1. Introduction

C60 compounds have a plasmon at about 25 eV, corresponding to the oscillation of both
the σ - and π -electrons, and another plasmon at about 6 eV, essentially corresponding to
the oscillation of theπ -electrons. In addition, the doped compounds A3C60 (A = K, Rb)
have a third plasmon at about 0.5 eV, corresponding to the oscillation of the three electrons
which the alkali atoms have donated into the partly filled t1u band [1]. Interestingly, this
plasmon appears to have a negligible dispersion [1], in contrast to the substantial, positive
dispersion found for most free-electron-like systems. It has actually been predicted that for
a solid consisting of weakly interacting units, like the C60 molecules, the dispersion should
be large and negative [2].

Here we present new measurements on single-phase K3C60 of the plasmon dispersion,
and show that it is indeed very close to zero. We further perform calculations of the
plasmon dispersion in the random-phase approximation (RPA) for a tight-binding model of
C60, taking into account band-structure and local-field (inhomogeneity) effects. We show
that the RPA, when applied to a realistic model of C60, does indeed predict a very small
(slightly negative) dispersion.

Anomalously small, or even negative, dispersions have been observed for some alkali
metals [3]. It has been shown that in this case the anomalous dispersion is due to interband
transitions, and that transitions into unoccupied d states tend toreducethe dispersion [4].
Here we show that the effect of the interband transitions for C60 is exactly the opposite,
and that the interband transitions tend toincreasethe dispersion. The reason is that the
interband transitions in this case essentially describe the dielectric function from an array
of weakly interacting C60 molecules. This dielectric function reduces the plasmon energy.
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For larger values of the wave vectorq, the dielectric function is substantially reduced, and
therefore the reduction of the plasmon frequency is less important. The result is a tendency
of the plasmon energy to increase withq. The effects of the interband transitions is the
most important difference from the earlier work of Kresin and Kresin [2], who neglected
these transitions and therefore predicted the dispersion to be large and negative.

The importance of the local-field effects for these very inhomogeneous systems have
been emphasized by Kresin and Kresin [2], who studied a one-band model with essentially
a free-electron dispersion but took the inhomogeneity of the charge density into account.
Since the t1u level is threefold degenerate, we here study a three-band model, using a tight-
binding model to obtain a fairly realistic description of the band structure and wave functions.
The orientational disorder in the real system is neglected. We show how this model can
rather accurately be mapped onto a one-band model, as far as the dielectric properties are
concerned. We then discuss the local-field effects using a formalism introduced earlier
[5]. This formalism has been applied to NiO, where we emphasized the importance of
the Coulomb integral describing the self-interaction of the charge density corresponding to
a product function involving the important transitions in the dielectric function. For C60,
where the t1u orbitals are rather extended, this Coulomb integral is rather small and does
not play an important role. The important aspect is instead that the Fourier transform of
the t1u charge density decays relatively rapidly with increasingq over the relevant range of
q. We demonstrate that this leads to a substantial negative dispersion, which is, however,
largely cancelled by the tendency of the interband transitions to give a positive dispersion.
The small dispersion is therefore rather nontrivial and results from two fairly large but
essentially cancelling effects.

We present the formalism used for the calculations in section 2, the model in section 3
and the experimental and theoretical results in section 4. In section 5 we perform a
calculation in the t1u space and analyse the local-field effects and in section 6 we study
the dielectric function due to the polarizability of the C60 molecules classically. The results
are summarized in section 7.

2. Formalism

The plasmon dispersion is determined by the response function, and the formalism for
calculating this function is presented below. We essentially follow our earlier work [5, 6].
The RPA has been applied to a free C60 molecule by, e.g., Bertschet al [7] and by Alasia
et al [8]. In the RPA, the irreducible polarizability for the frequencyω is given by

P0(r, r′, ω) = 2
∑
kn

∑
k′n′

ψkn(r)ψ∗
kn(r

′)ψ∗
k′n′(r)ψk′n′(r′)

ε(kn) − ε(k′n′) − ω
[f (kn) − f (k′n′)] (1)

whereψkn(r) is the wave function for a state with the wave vectork, band indexn and
energyε(kn). f (kn) is the Fermi function and a factor 2 comes from summation over
spin. The Bloch statesψkn(r) are expressed as

ψkn(r) = 1√
N

∑
iLα

eik·Rα ciL(kn)φL(r − Ri − Rα) (2)

whereRi gives the positions of the 60 atoms inside a molecule relative to the positionRα

of that molecule.L ≡ (l, m) labels the basis functionsφL (e.g., one 2s and three 2p) on a
given atom andN is the number of molecules in the system. Later we also use three t1u

orbitals as basis functions. In that case there is no sum overRi and the sum overL refers
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to the three t1u basis states. We now introduce a new basis set of product functions for
describing the polarizability

8qiLL′(r) ≡ 8qν(r) = 1√
N

∑
α

eiq·RαφL(r − Ri − Rα)φL′(r − Ri − Rα) (3)

where we have usedν ≡ iLL′ as a combined index. If we assume that the overlap between
φs on different atoms can be neglected, we obtain

P0(r, r′, ω) =
∑

q

∑
iLL′

∑
jL1L2

8∗
qiLL′(r)P̃0(iLL′, jL1L2, q, ω)8qjL1L2(r

′) (4)

where the sum overq is limited to the first Brillouin zone and

P̃0(iLL′, jL1L2, q, ω) = 2

N

∑
knn′

ciL(kn)c∗
iL′(k + qn′)c∗

jL1
(kn)cjL2(k + qn′)

ε(kn) − ε(k + qn′) − ω

×[f (kn) − f (k + qn′)]. (5)

In this way we have expressed the irreducible polarizability in terms of matrices with the
dimension 60×4×4 = 960, if there are four basis functions per atom and one C60 molecule
per unit cell.

We now consider the screening of an external potential

V ext (r, t) = V ext (r, ω)e−iωt = V ext (q, ω)ei(q·r−ωt)/
√

N�. (6)

The screened potential,V scr (r, ω), satisfies the equation

V scr (r, ω) = V ext (r, ω) +
∫

d3r ′
∫

d3r ′′v(r − r′)P 0(r′, r′′, ω)V scr (r′′, ω) (7)

wherev(r − r′) is the unscreened Coulomb interaction. This equation describes how the
screened potential induces a charge densityP 0V scr and an induced potentialvP 0V scr . To
solve forV scr , we notice that due to the separable form [9, 10] ofP0 in equation (4), only
integrals over8qν(r)V scr (r, ω) enter. Thus we introduce

Ṽ scr
ν (q, ω) =

∫
d3r 8qν(r)V scr (r, ω) (8)

together with a similar definition for̃V ext . We then find

Ṽ scr
ν (q, ω) = Ṽ ext

ν (q, ω) +
∑
µ,ν ′

ṽνµ(q)P̃ 0
µν ′(q, ω)Ṽ scr

ν ′ (q, ω) (9)

where

ṽµν(q) =
∫

d3r d3r ′ 8qµ(r)v(r − r′)8∗
qν(r

′). (10)

We now treatv andP 0 as matrices with indicesµ andν andV ext andV scr as vectors.
The solution of equation (9) can be written as

Ṽ scr = (1 − ṽP̃ 0)−1Ṽ ext . (11)

The condition for having a plasmon is that an induced potential can be sustained even when
Ṽ ext ≡ 0. This condition is given by

det(1 − ṽP̃ 0) = 0. (12)

We further write

8qµ(r) = 1√
N�

{
fµ(q)eiq·r +

∑
G 6=0

Cq+Gµei(q+G)·r
}

(13)
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where� is the volume of the unit cell andq is limited to the first Brillouin zone. Here

fµ(q) = fiLL′(q) = 1√
�

∫
d3r φiL(r)φiL′(r)e−ir·q. (14)

If L = L′, we obtain that

fiLL(q → 0) = 1/
√

�

from the normalization ofφiL(r). We now consider the matrix elementṽµν(q) in more
detail and write

ṽµν(q) = fµ(q)v(q)fν(q) + wµν(q) (15)

wherev(q) = 4πe2/q2 and

wµν(q) =
∑
G 6=0

v(|q + G|)|Cq+G|2. (16)

From the definition, it follows thatwµν(q) is obtained by constructing the charge density
8qν(r), subtracting theqth Fourier coefficient and then calculating the interaction of this
charge density with itself.

The local-field effects enter both via theq-dependence offiLL(q) and the finite value of
wµν(q). For systems with very localized levels, e.g., NiO treated earlier [5], the important
effects come viawµν(q). Below we show that for C60 the important effects come from the
reduction offiLL(q) with increasing value of|q|.

3. Model

We now introduce a model of C60 for which we calculate the plasmon dispersion. We
consider the one-particle Hamiltonian describing the states in an isolated molecule

H 0
Mol =

∑
iLσ

εLniLσ +
∑

iLjL′σ

[t (iL, jL′)ψ†
iLσ ψjL′σ + HC] (17)

where εL gives the energies of the 2s and 2p levels andt (iL, jL′) gives the hopping
integrals between the states. We use the parameters of Tomanek and Schluter [11], and
assume nearest-neighbour hopping as usual [11]. From equation (17) we obtain the levels
of an isolated C60 molecule and the corresponding molecular orbitals (MO). In the solid
these levels are broadened to narrow subbands. We neglect the corresponding dispersion for
all the bands, except for the t1u band, which in the doped system is partially occupied. The
dispersion of the t1u band is important, since it determines the metallic screening. To obtain
the dispersion of the t1u band, we have given a 3× 3 analyticalk-dependent Hamiltonian
[14], which is used here. We also neglect the mixing in the solid of MOs with different
energies. This mixing is weak, since the energy separation of the MOs is large compared
with the hopping matrix elements.

The Coulomb integrals between the orbitals are defined as

V (iLα, jL′β; mL′′γ, nL′′′δ) = e2
∫

d3r

∫
d3r ′ φL(r − Ri − Rα)φL′(r − Rj − Rβ)

× 1

|r − r′|φL′′(r′ − Rm − Rγ )φL′′′(r′ − Rn − Rδ). (18)

Since we neglect the overlap of the functions centred on different atoms,V is nonzero only
if (iα) = (jβ) and(mγ ) = (nδ). If L = L′ and if L′′ = L′′′, this integral corresponds to the



Plasmon dispersion in A3C60 (A = K, Rb) 2561

interaction between two monopoles, which is large. If the two conditions are not fulfilled,
the interaction is between multipoles and smaller. We therefore make the assumption

V (iLα, jL′β; mL′′γ, nL′′′δ) = δL,L
′ δL′′,L′′′δi,j δα,βδm,nδγ,δ

×
{

e2/|Ri + Rα − Rj − Rδ| for |Ri + Rα − Rj − Rδ| > 0

V0 for |Ri + Rα − Rj − Rδ| = 0.
(19)

This approximation has been discussed elsewhere [6]. For the on-site interaction, we have
obtainedV0 = 12 eV from atomic calculations [6]. With the approximation (19) it is then
straightforward to calculatẽv(iLL, jL′L′, q) by using the Ewald technique. The dimension
of the matrices in (9) is now reduced to 60× 4 = 240. The approximation (19) means that
we neglect the polarization of the individual C atoms, but that we allow for polarization
through charge transfer from one atom to another. Since the diameter of the C60 molecule is
large compared with the size of a C atom, we expect the charge transfer across the molecule
to be important. A similar approximation was also used by Bertschet al [7], but their result
for the polarizability of the free molecule was less good than the result below, presumably
because Bertschet al [7] introduced some additional approximations. In the calculations for
the solid, we consider an fcc lattice with the lattice parameter 14.39Å and one C60 molecule
per unit cell. The lattice parameter corresponds to Rb3C60, but the results are not changed
very much for the lattice parameter of K3C60. To be able to perform the calculations, we
assume that all molecules have the same orientation, while it is experimentally believed
that the molecules take one of two different orientations in a random way [15]. While we
consider an ordered system, the true system therefore has a substantial disorder.

In this model we find that the polarizabilityα of a free C60 molecule is 50Å3. From
the Clausius–Mossotti relation and the experimental dielectric function (4.4) for an undoped
C60 crystal [12], we deduce a molecular polarizability of 89Å3. The difference from our
calculated value is probably due to the neglect of the polarizability of the individual C
atoms and to the neglect of exchange–correlation effects (using the RPA). To obtain the
correct dielectric function of the undoped system within our model, we have expanded
the C60 molecule by 23%. This is somewhat smaller than the expansion 33% deduced
by Yannouleas and Landman, who considered the effective capacitance of C60 [16]. The
resulting plasmon energy is somewhat too large compared with experiment, and we have
therefore reduced the theoretical t1u band width given by the analytical Hamiltonian [14]
by a factor 0.6. These corrections are not essential for the behaviour of the dispersion.

4. Results

In figure 1 we show the experimental results for the electron loss function as a function
of the energy and momentum transfer for K3C60. The data are normalized to the intensity
of the volume plasmon at about 25 eV. These results were obtained by electron energy-
loss spectroscopy (EELS) measurements in transmission using a 170 keV spectrometer
[17]. The energy and momentum resolution were chosen to be 120 meV and 0.05Å−1,
respectively. Single-phase K3C60 films were grown using vacuum distillation [18, 19]. The
film thickness was about 1500̊A. Details of the sample preparation and characterization
are given elsewhere [20]. The raw data have been corrected for elastic line contributions.
We note that this procedure did not alter the energy position of the plasmon at 0.5 eV in
figure 1. The plasmon peak position is independent ofq within the experimental accuracy,
implying a very small dispersion of the plasmon. The peak at about 1.3 eV is due to an
interband t1u → t1g transition. Intriguingly, the width of the plasmon is also independent of
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Figure 1. The experimental loss function for K3C60 as a function
of energy and for different values of the momentum transfer. The
dashed lines indicate the energy region where the curves have been
extrapolated to zero energy after elastic line subtraction.

the momentum transfer and it is furthermore about as large as the plasmon energy itself. In
simple metals the plasmon width is mainly determined by a decay into interband transitions.
However, the first interband transition at about 1.3 eV is much higher than the plasmon
energy and the transitions inside the t1u band are probably at too low energies to explain
the large, symmetric broadening of the plasmon. The origin of this broadening will be
discussed in a separate publication [21].

In figure 2 we show the calculated plasmon energy forq in different directions.
In agreement with experiment, the theoretical dispersion is small. The weak direction
dependence may be a defect of performing the calculations for an ordered crystal.

To analyse the results, we have further performed a calculation where all the interband
transitions are suppressed, and only transitions within the t1u band are allowed. The results
are also shown in figure 2. It is striking that the dispersion is now strongly negative. For
q = 0 the plasmon energy is reduced by about a factor of two by the interband transitions.
The reason is that these transitions essentially describe the dielectric function (ε ∼ 4) of the
undoped C60 compound, neglecting the fact that the available interband transitions differ
somewhat for the doped solid due to the partial filling of the t1u band. This dielectric
function reduces the plasmon energy by a factor of

√
ε. For larger values ofq, however,

the interband transitions apparently do not reduce the plasmon energy very much. These
results are analysed below.

5. Calculation within the t1u space

Above we have illustrated that if only the t1u orbitals are considered, the dispersion is
negative. In this section we want to analyse this in detail. For this reason we now present
a simplified calculation, while the results in figure 2 were obtained using the full formalism
in section 2.

In the analysis below, the basis functionsφL(r − Ri − Rν) in equation (2) refer
to the three t1u orbitals, andRi = 0. There are six functions8LL′(r) (equation (3)),
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Figure 2. The theoretical plasmon energy as a function of|q| for different directions ((1, 0, 0)
(full line), (1, 1, 0) (dashed line) and (1, 1, 1) (chain line)) ofq. The upper curves (in the energy
range 0.55–1.07 eV) show calculations in the t1u space and the lower curves (energy range
0.47–0.50 eV) show results of the full calculation, including interband transitions.

corresponding toLL′ = (1, 1), (2, 2), (3, 3), (1, 2), (2, 3) and (3, 1). These functions are
labelled byν = 1, . . . , 6. The functions (2, 1), (3, 2) and (1, 3) are identical to the ones
already considered. For|q| → 0, the functionsfLL′(q) → δLL′/

√
�. The matrix elements

ṽµν of the Coulomb interaction (equation (15)) are therefore large only ifL = L′. The
corresponding values are then very similar. We introduce the approximation that these
matrix elements have the same value (v0) and that all the other matrix elements ofṽ are
zero. The 6× 6 matrix ṽµν then takes the approximate form

ṽ ≈


v0 v0 v0 0 0 0
v0 v0 v0 0 0 0
v0 v0 v0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (20)

The complete neglect of all elements but the ones in the upper left corner is by itself
not quite justified, but becomes justified in the context whereṽ is used below. We also
need an approximation for the polarizabilitỹP 0(LL′, L1L2, q, ω). From the definition in
equation (5), we can see that ifL = L1 and L′ = L2, the numerator takes the form
|cL(kn)cL′(k + qn′)|2. Since this quantity is always positive, there is no cancellation
between terms with differentk and nn′. These matrix elements are therefore important.
For small values ofq the elements withL = L′ andL1 = L2 are also large. We therefore
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make the approximation

P̃0 ≈


p0 p1 p1 0 0 0
p1 p0 p1 0 0 0
p1 p1 p0 0 0 0
0 0 0 p2 0 0
0 0 0 0 p2 0
0 0 0 0 0 p2

 . (21)

We now apply the condition of equation (12) for a plasmon

0 = det(1 − ṽP̃ 0) = 1 − 3v0(p0 + 2p1) ≡ 1 − 3v0ps. (22)

We have thus turned our three-band model into effectively a one-band model, with the
polarizability ps = p0 + 2p1. We have tested the approximations above, by comparing
the dispersion deduced from equation (22) with the dispersion from the full calculation in
the t1u space. The difference is at most about 5% and usually much smaller. To proceed
further, we now replace the wave functionsφL(r) by the approximate wave function [2]

φL(r)2 = 1

4πR2
0

δ(|r| − R0) (23)

where we have assumed that the wave function is uniformly spread out over a shell with the
radiusR0 ≈ 3.5 Å, defined by the nuclear positions in the C60 molecule. We then obtain

fLL(q) = 1√
�

sin(|q|R0)

|q|R0
. (24)

The Coulomb interactionwLL,L′L′(q = 0) is approximately given by

wLL,L′L′(q = 0) ≈ e2

RWS

[
RWS

R0
+

(
R0

RWS

)2

− 9

5

]
(25)

whereRWS ≈ 5.6 Å, is the Wigner–Seitz radius of a C60 molecule. From the full calculations
we derivew(0) = 0.45 eV, in good agreement with the estimate (0.47 eV) in equation (25).
We write

ṽLL,L1L1(q) = 1

�

4πe2

q2

[
1 − (qRWS)

2

(
3

5
− 1

3

RWS

R0

)
+ O(q4)

]
(26)

We further write

ps(q, ω) = A + B|q|2
ω2

|q|2 (27)

which is valid for the values ofω of interest here. HereA and B are constants. There
is no contribution of the order|q|0 due to phase-space arguments. We can then write the
condition (equation (22)) for a plasmon as

0 = 1 − 3psv0 (28)

= 1 − 12πe2A

ω2�

{
1 +

[
B

A
− 1

5
(RWS)

2

(
1 − 5

9

RWS

R0

)]
|q|2

}
. (29)

The dispersion is then determined by the coefficient of the|q|2-term. If this coefficient is
negative, the dispersion is also negative.

Alternatively, we can write

ṽLL,L′L′(q) =
∑

α

eiq·Rα

∫
φ2

L(r)v(r − r′)φ2
L′(r − Rα) d3r d3r ′. (30)
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Using the form (23) forφ2
L, ṽ is the interaction between spherical shells of charges on each

site. Since the interaction between two spherical, nonoverlapping charges can be replaced
by the interaction between two point charges at the centres of the spheres, we obtain

ṽLL,L′L′(q) =
∑
α 6=0

eiq·Rα

|Rα| + e2

R0
. (31)

The sum is then independent ofR0 and only the on-site interactione2/R0 depends on the
size of the molecules. We replace the sum by an integral

ṽLL,L′L′(q) = e2

�

∫
|r|>RWS

d3r
eiq·r

|r| + e2

R0
≈ 1

�
v(q) − 2πe2

�
R2

WS + e2

R0

= 1

�
v(q)

[
1 − 1

2
(qRWS)

2

(
1 − 2

3

RWS

R0

)]
. (32)

We can see that the sum overα in equation (31) is equal tov(q)/�, which is what we
would obtain if all local-field effects were neglected, minus a correction term. Numerical
calculations for a fcc lattice show that this correction term is underestimated by about 20%
in the approximation above. If expression (32) is corrected correspondingly, it becomes
very similar to expression (26).

It is now immediately clear that if the radiusR0 of the molecule is sufficiently large,
the terme2/R0 is not sufficient to compensate for the correction term discussed above, and
the interaction isweakerthan if the local-field effects had been neglected. In particular, the
relative deviation from the case without local-field effects grows withq, as is indicated by
the negative coefficient ofq2 in equation (32). This weaker interaction tends to reduce the
dispersion or even lead to a negative dispersion. This applies to C60. On the other hand,
if R0 is small, the interaction isstrongerthan in the case without local-field effects, which
then tends to make the dispersion more positive (or less negative). In our earlier work on
NiO, the latter case was applicable, because of the very localized nature of the Ni 3d orbital.
In that case we focused on the self-interactionw(0) and neglected the effects off (q) in
the qualitative discussions.

In the expression (28), we find that the termB/A ≈ −4 Å2 and the next term is about
−2 Å2. The coefficient of the|q|2-term is then−6 Å2. This gives the plasmon energy
ω(q) ≈ ω(q = 0)(1 − 3q2). This dispersion is a bit smaller than the direction-dependent
dispersion derived from the full calculation in the t1u space (the upper curve in figure 2).
We observe that in a free-electron-like system the value ofB/A is positive. The large,
negative value ofB/A obtained here is a result of the completely different band structure
obtained for an ordered C60 solid. We have performed a calculation for disordered, solid C60,
considering intraband effects only, as in this section [21]. We then found that the dispersion
remains negative, but that it is somewhat less negative than in the ordered solid [21].

6. Interband transitions

Above we showed that the interband transitions lead to a strong reduction of the plasmon
energy for small values of|q| while the reduction is small at the zone boundaries. The
interband transitions describe how the C60 molecules polarize as a response to the oscillations
of the t1u electrons. To understand this effect better, we treat the C60 molecules as classical
polarizable spheres. This does not include the metallic screening, which was already taken
into account in the calculation within the t1u space, but includes the essential effects of the
interband transitions.
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For simplicity we first replace the C60 molecules by metallic spheres, with the radiiR.
Since the polarizability of such a sphere isR3, we chooseR = 4.46 Å, to reproduce the
polarizability 89Å3 of a free C60 molecule. It is interesting that this radius is larger than
the radius,R0 = 3.5 Å, of the C60 molecule defined by the position of the nuclei plus the
covalent radius, 0.7̊A, of a C atom. This illustrates that the outermost tails of the atomic
charge distribution play an important role for the polarizability. This effect was neglected
in our calculation of the molecular polarizability, since we did not allow for a polarization
of the individual atoms. Our expansion of the C60 molecules, however, probably describes
most of this effect.

Figure 3. The molecular polarizabilityα(q) (equation (36))
for a metallic sphere as a function ofqR, whereR is the
sphere radius. In the (1, 0, 0) direction, the Brillouin zone
boundary corresponds toqR = 1.95.

We first calculate the induced dipole moment when an external, longitudinal electric
field

Eext (r) = Eext ẑeiqz (33)

with a finite vectorq = (0, 0, q) is applied to the sphere. For simplicity we have assumed
that the field is in thez-direction. This field is created by an external charge

ρext (r) = 1

4π
∇ · Eext = i

4π
E0qeiqz. (34)

To obtain the induced field outside the sphere we create the images of the external charges
in the sphere. The dipole in thez-direction of the image charges is then

P(q) =
∫

|r|>R

d3 r

(
− i

4π
E0qeiqz R

r

)
zR2

r2
. (35)

We then find the dipole polarizability

α(q) = P(q)

Eext
= −R3

∫ ∞

qR

dr

r

(
cosr − 1

r
sinr

)
. (36)

All higher multipole moments are neglected, which is consistent with the treatment below.
In the limit of q = 0 the polarizability reduces toR3, as it should. In figure 3 we show the
dependence ofα(q) on qR. At q-values corresponding to the Brillouin zone boundaries,
α(q) is reduced by about a factor of two.

We now consider the response of C60 molecules on a fcc lattice to an externalq-
dependent electric field, following the Lorentz–Lorentz approach forq → 0. As in this
approach we consider the C60 molecules as point dipoles. The finite size of the molecules
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Figure 4. The function−ρC60F(q) in equation (39) as
a function ofqRWS , whereRWS is the Wigner–Seitz
radius, for the directions (1, 0, 0) (full curve), (1, 1, 0)
(dashed curve) and (1, 1, 1) (chain curve). In the (1, 0, 0)
direction the Brillouin zone boundary corresponds to
qRWS = 2.5.

Figure 5. The dielectric function in equation (43) as a
function of q, for the directions (1, 0, 0) (full curve),
(1, 1, 0) (dashed curve) and (1, 1, 1) (chain curve).
In the (1, 0, 0) direction the Brillouin zone boundary
corresponds toq = 0.44.

has, however, been included in theq-dependence of the molecular dipole polarizability,
as discussed above. The neglect of higher multipoles is only used for the purpose of the
present analysis, while in the full calculation of the results in figure 2 such an approximation
is not used. We apply the external, longitudinal field

Eext
ν = Eexteiq·Rν (37)

to the molecule at the positionRν . This field is screened self-consistently, resulting in the
induced dipolespindexp(iq · Rν) and induced fieldsEindexp(iq · Rν). We then have that

Eind = pindF (q), (38)

where

F(q) = 1

ρC60

∑
ν 6=0

[
3
(p̂ · Rν)Rν

|Rν |5 − p̂

|Rν |3
]

eiq·Rν (39)

whereρC60 is the density of C60 molecules, and̂p = q̂ is the direction ofpind . As in the
Lorentz–Lorentz treatment we now write the macroscopic dielectric function as

1

ε
= 1 + |Eind |

|Eext | + |Eself |
|Eext | (40)

where for

Eself = −4π

3
ρC60p

ind (41)

we have used the average over the unit cell of the field from the dipole in that unit cell,
as in the Lorentz–Lorentzq = 0 treatment. We have here used the value ofEind at the
position of a molecule instead of its average over the cell. Furthermore we have

pind = α(q)(Eext + Eind). (42)
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This leads to

ε = 1 − ρC60F(q)α(q)

1 − 4πρC60α(q)/3
. (43)

We findF(0) = 8π/3, which leads to the Clausius–Mossotti relation forq = 0. In figure 4
we show the variation ofF(q). For aq corresponding to the Brillouin zone boundary,F

is substantially reduced for the (1, 0, 0) direction, close to zero for the (1, 1, 0) direction but
little reduced for the (1, 1, 1) direction. In figure 5 we show the corresponding variation of
the dielectric functionε. For q = 0 and for the lattice parameter used here, the dielectric
function is about 4.0 and the plasmon energy is reduced by a factor

√
ε = 2.0. On the

other hand, at the Brillouin zone boundaries the dielectric function is close to one, and the
plasmon energy is only reduced by a small amount, in agreement with the full calculation.
The calculation of theε(q) further correctly predicts that the reduction is largest for the
(1, 1, 1) direction and smallest for the (1, 1, 0) direction.

7. Summary

We have presented experimental and theoretical results for the plasmon dispersion in A3C60,
showing that the dispersion is anomalously small. We have demonstrated that this small
dispersion is due to two large, almost cancelling effects. Local-field effects tend to give a
negative dispersion and interband transitions tend to give a positive dispersion.

We have analysed the effects of the interband transition in terms of a classical dielectric
function, treating the C60 molecules as metallic spheres. The dielectric function reduces
the plasmon energy by a factor

√
ε, which is of the order two for smallq but of the order

of 1.3 at the Brillouin zone boundaries. To obtain thisq-dependence we first studied the
induced dipole moment for a free sphere in an external field with a finiteq-vector, and
found a reduction by almost a factor of two forq at the zone boundary. We then performed
an analysis where the C60 molecules were treated as point dipoles, along the lines of the
Lorentz–Lorentz approach, but considering finiteq. We found that the relevant lattice sum
depends strongly on the direction and might be reduced by about a factor of two at the zone
boundary. As a result, the dielectric function was reduced by about a factor 2.5 at the zone
boundary from its value atq = 0, resulting in a large tendency to a positive dispersion.

The local-field effects were analysed in a framework where the Fourier transformf of
the t1u molecular orbital enters as an important quantity. A second important quantity is the
Coulomb self-interactionw of the charge density from a t1u orbital minus its average over
the unit cell. We found thatf favours a negative dispersion whilew favours a positive
dispersion. For systems where the relevant orbital is well localized, e.g., the 3d orbital in
3d compounds,w plays the essential role. C60 compounds fall at the opposite limit, where
f is much more important thatw.

Finally, we observe that it would be interesting to study doped, molecular solids where
the relative importance off , w and the dielectric function for the undoped solid is different,
and where different types of plasmon dispersions may therefore be observed.
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